
Kerberos Concepts
Release 1.19.3

MIT





CONTENTS

1 Credential cache 1

2 keytab 5

3 replay cache 7

4 stash file 9

5 Supported date and time formats 11

Index 15

i



ii



CHAPTER

ONE

CREDENTIAL CACHE

A credential cache (or “ccache”) holds Kerberos credentials while they remain valid and, generally, while the user’s
session lasts, so that authenticating to a service multiple times (e.g., connecting to a web or mail server more than
once) doesn’t require contacting the KDC every time.

A credential cache usually contains one initial ticket which is obtained using a password or another form of identity
verification. If this ticket is a ticket-granting ticket, it can be used to obtain additional credentials without the password.
Because the credential cache does not store the password, less long-term damage can be done to the user’s account if
the machine is compromised.

A credentials cache stores a default client principal name, set when the cache is created. This is the name shown at the
top of the klist(1) -A output.

Each normal cache entry includes a service principal name, a client principal name (which, in some ccache types, need
not be the same as the default), lifetime information, and flags, along with the credential itself. There are also other
entries, indicated by special names, that store additional information.

1.1 ccache types

The credential cache interface, like the keytab and replay cache interfaces, uses TYPE:value strings to indicate the
type of credential cache and any associated cache naming data to use.

There are several kinds of credentials cache supported in the MIT Kerberos library. Not all are supported on every
platform. In most cases, it should be correct to use the default type built into the library.

1. API is only implemented on Windows. It communicates with a server process that holds the credentials in
memory for the user, rather than writing them to disk.

2. DIR points to the storage location of the collection of the credential caches in FILE: format. It is most useful
when dealing with multiple Kerberos realms and KDCs. For release 1.10 the directory must already exist. In
post-1.10 releases the requirement is for parent directory to exist and the current process must have permissions
to create the directory if it does not exist. See Collections of caches for details. New in release 1.10. The
following residual forms are supported:

• DIR:dirname

• DIR::dirpath/filename - a single cache within the directory

Switching to a ccache of the latter type causes it to become the primary for the directory.

3. FILE caches are the simplest and most portable. A simple flat file format is used to store one credential after
another. This is the default ccache type if no type is specified in a ccache name.

4. KCM caches work by contacting a daemon process called kcm to perform cache operations. If the cache name
is just KCM:, the default cache as determined by the KCM daemon will be used. Newly created caches must
generally be named KCM:uid:name, where uid is the effective user ID of the running process.

1



Kerberos Concepts, Release 1.19.3

KCM client support is new in release 1.13. A KCM daemon has not yet been implemented in MIT krb5, but
the client will interoperate with the KCM daemon implemented by Heimdal. macOS 10.7 and higher provides
a KCM daemon as part of the operating system, and the KCM cache type is used as the default cache on that
platform in a default build.

5. KEYRING is Linux-specific, and uses the kernel keyring support to store credential data in unswappable kernel
memory where only the current user should be able to access it. The following residual forms are supported:

• KEYRING:name

• KEYRING:process:name - process keyring

• KEYRING:thread:name - thread keyring

Starting with release 1.12 the KEYRING type supports collections. The following new residual forms were
added:

• KEYRING:session:name - session keyring

• KEYRING:user:name - user keyring

• KEYRING:persistent:uidnumber - persistent per-UID collection. Unlike the user keyring, this collection
survives after the user logs out, until the cache credentials expire. This type of ccache requires support
from the kernel; otherwise, it will fall back to the user keyring.

See Collections of caches for details.

6. MEMORY caches are for storage of credentials that don’t need to be made available outside of the current
process. For example, a memory ccache is used by kadmin(1) to store the administrative ticket used to contact
the admin server. Memory ccaches are faster than file ccaches and are automatically destroyed when the process
exits.

7. MSLSA is a Windows-specific cache type that accesses the Windows credential store.

1.2 Collections of caches

Some credential cache types can support collections of multiple caches. One of the caches in the collection is desig-
nated as the primary and will be used when the collection is resolved as a cache. When a collection-enabled cache
type is the default cache for a process, applications can search the specified collection for a specific client principal,
and GSSAPI applications will automatically select between the caches in the collection based on criteria such as the
target service realm.

Credential cache collections are new in release 1.10, with support from the DIR and API ccache types. Starting in
release 1.12, collections are also supported by the KEYRING ccache type. Collections are supported by the KCM
ccache type in release 1.13.

1.2.1 Tool alterations to use cache collection

• kdestroy(1) -A will destroy all caches in the collection.

• If the default cache type supports switching, kinit(1) princname will search the collection for a matching cache
and store credentials there, or will store credentials in a new unique cache of the default type if no existing cache
for the principal exists. Either way, kinit will switch to the selected cache.

• klist(1) -l will list the caches in the collection.

• klist(1) -A will show the content of all caches in the collection.

• kswitch(1) -p princname will search the collection for a matching cache and switch to it.

2 Chapter 1. Credential cache



Kerberos Concepts, Release 1.19.3

• kswitch(1) -c cachename will switch to a specified cache.

1.3 Default ccache name

The default credential cache name is determined by the following, in descending order of priority:

1. The KRB5CCNAME environment variable. For example, KRB5CCNAME=DIR:/mydir/.

2. The default_ccache_name profile variable in libdefaults.

3. The hardcoded default, DEFCCNAME.

1.3. Default ccache name 3



Kerberos Concepts, Release 1.19.3

4 Chapter 1. Credential cache



CHAPTER

TWO

KEYTAB

A keytab (short for “key table”) stores long-term keys for one or more principals. Keytabs are normally represented
by files in a standard format, although in rare cases they can be represented in other ways. Keytabs are used most often
to allow server applications to accept authentications from clients, but can also be used to obtain initial credentials for
client applications.

Keytabs are named using the format type:value. Usually type is FILE and value is the absolute pathname of the file.
The other possible value for type is MEMORY, which indicates a temporary keytab stored in the memory of the current
process.

A keytab contains one or more entries, where each entry consists of a timestamp (indicating when the entry was written
to the keytab), a principal name, a key version number, an encryption type, and the encryption key itself.

A keytab can be displayed using the klist(1) command with the -k option. Keytabs can be created or appended to by
extracting keys from the KDC database using the kadmin(1) ktadd command. Keytabs can be manipulated using the
ktutil(1) and k5srvutil(1) commands.

2.1 Default keytab

The default keytab is used by server applications if the application does not request a specific keytab. The name of the
default keytab is determined by the following, in decreasing order of preference:

1. The KRB5_KTNAME environment variable.

2. The default_keytab_name profile variable in libdefaults.

3. The hardcoded default, DEFKTNAME.

2.2 Default client keytab

The default client keytab is used, if it is present and readable, to automatically obtain initial credentials for GSSAPI
client applications. The principal name of the first entry in the client keytab is used by default when obtaining initial
credentials. The name of the default client keytab is determined by the following, in decreasing order of preference:

1. The KRB5_CLIENT_KTNAME environment variable.

2. The default_client_keytab_name profile variable in libdefaults.

3. The hardcoded default, DEFCKTNAME.

5



Kerberos Concepts, Release 1.19.3

6 Chapter 2. keytab



CHAPTER

THREE

REPLAY CACHE

A replay cache (or “rcache”) keeps track of all authenticators recently presented to a service. If a duplicate authenti-
cation request is detected in the replay cache, an error message is sent to the application program.

The replay cache interface, like the credential cache and keytab interfaces, uses type:residual strings to indicate the
type of replay cache and any associated cache naming data to use.

3.1 Background information

Some Kerberos or GSSAPI services use a simple authentication mechanism where a message is sent containing an
authenticator, which establishes the encryption key that the client will use for talking to the service. But nothing about
that prevents an eavesdropper from recording the messages sent by the client, establishing a new connection, and
re-sending or “replaying” the same messages; the replayed authenticator will establish the same encryption key for
the new session, and the following messages will be decrypted and processed. The attacker may not know what the
messages say, and can’t generate new messages under the same encryption key, but in some instances it may be harmful
to the user (or helpful to the attacker) to cause the server to see the same messages again a second time. For example,
if the legitimate client sends “delete first message in mailbox”, a replay from an attacker may delete another, different
“first” message. (Protocol design to guard against such problems has been discussed in RFC 4120#section-10.)

Even if one protocol uses further protection to verify that the client side of the connection actually knows the encryption
keys (and thus is presumably a legitimate user), if another service uses the same service principal name, it may be
possible to record an authenticator used with the first protocol and “replay” it against the second.

The replay cache mitigates these attacks somewhat, by keeping track of authenticators that have been seen until their
five-minute window expires. Different authenticators generated by multiple connections from the same legitimate
client will generally have different timestamps, and thus will not be considered the same.

This mechanism isn’t perfect. If a message is sent to one application server but a man-in-the-middle attacker can
prevent it from actually arriving at that server, the attacker could then use the authenticator (once!) against a different
service on the same host. This could be a problem if the message from the client included something more than
authentication in the first message that could be useful to the attacker (which is uncommon; in most protocols the
server has to indicate a successful authentication before the client sends additional messages), or if the simple act of
presenting the authenticator triggers some interesting action in the service being attacked.

3.2 Replay cache types

Unlike the credential cache and keytab interfaces, replay cache types are in lowercase. The following types are defined:

1. none disables the replay cache. The residual value is ignored.

2. file2 (new in release 1.18) uses a hash-based format to store replay records. The file may grow to accommodate
hash collisions. The residual value is the filename.

7

https://tools.ietf.org/html/rfc4120.html#section-10


Kerberos Concepts, Release 1.19.3

3. dfl is the default type if no environment variable or configuration specifies a different type. It stores replay data
in a file2 replay cache with a filename based on the effective uid. The residual value is ignored.

For the dfl type, the location of the replay cache file is determined as follows:

1. The directory is taken from the KRB5RCACHEDIR environment variable, or the TMPDIR environment vari-
able, or a temporary directory determined at configuration time such as /var/tmp, in descending order of
preference.

2. The filename is krb5_EUID.rcache2 where EUID is the effective uid of the process.

3. The file is opened without following symbolic links, and ownership of the file is verified to match the effective
uid.

On Windows, the directory for the dfl type is the local appdata directory, unless overridden by the
KRB5RCACHEDIR environment variable. The filename on Windows is krb5.rcache2, and the file is opened
normally.

3.3 Default replay cache name

The default replay cache name is determined by the following, in descending order of priority:

1. The KRB5RCACHENAME environment variable (new in release 1.18).

2. The KRB5RCACHETYPE environment variable. If this variable is set, the residual value is empty.

3. The default_rcache_name profile variable in libdefaults (new in release 1.18).

4. If none of the above are set, the default replay cache name is dfl:.

8 Chapter 3. replay cache



CHAPTER

FOUR

STASH FILE

The stash file is a local copy of the master key that resides in encrypted form on the KDC’s local disk. The stash file is
used to authenticate the KDC to itself automatically before starting the kadmind(8) and krb5kdc(8) daemons (e.g., as
part of the machine’s boot sequence). The stash file, like the keytab file (see keytab_file) is a potential point-of-entry
for a break-in, and if compromised, would allow unrestricted access to the Kerberos database. If you choose to install
a stash file, it should be readable only by root, and should exist only on the KDC’s local disk. The file should not
be part of any backup of the machine, unless access to the backup data is secured as tightly as access to the master
password itself.

Note: If you choose not to install a stash file, the KDC will prompt you for the master key each time it starts up. This
means that the KDC will not be able to start automatically, such as after a system reboot.

9



Kerberos Concepts, Release 1.19.3

10 Chapter 4. stash file



CHAPTER

FIVE

SUPPORTED DATE AND TIME FORMATS

5.1 Time duration

This format is used to express a time duration in the Kerberos configuration files and user commands. The allowed
formats are:

Format Example Value
h:m[:s] 36:00 36 hours
NdNhNmNs 8h30s 8 hours 30 seconds
N (number of seconds) 3600 1 hour

Here N denotes a number, d - days, h - hours, m - minutes, s - seconds.

Note: The time interval should not exceed 2147483647 seconds.

Examples:

Request a ticket valid for one hour, five hours, 30 minutes
and 10 days respectively:

kinit -l 3600
kinit -l 5:00
kinit -l 30m
kinit -l "10d 0h 0m 0s"

5.2 getdate time

Some of the kadmin and kdb5_util commands take a date-time in a human-readable format. Some of the acceptable
date-time strings are:

11



Kerberos Concepts, Release 1.19.3

Format Example
Date mm/dd/yy 07/27/12

month dd, yyyy Jul 27, 2012
yyyy-mm-dd 2012-07-27

Absolute time HH:mm[:ss]pp 08:30 PM
hh:mm[:ss] 20:30

Relative time N tt 30 sec
Time zone Z EST

z -0400

(See Abbreviations used in this document.)

Examples:

Create a principal that expires on the date indicated:
addprinc test1 -expire "3/27/12 10:00:07 EST"
addprinc test2 -expire "January 23, 2015 10:05pm"
addprinc test3 -expire "22:00 GMT"

Add a principal that will expire in 30 minutes:
addprinc test4 -expire "30 minutes"

5.3 Absolute time

This rarely used date-time format can be noted in one of the following ways:

Format Example Value
yyyymmddhhmmss 20141231235900 One minute before 2015
yyyy.mm.dd.hh.mm.ss 2014.12.31.23.59.00
yymmddhhmmss 141231235900
yy.mm.dd.hh.mm.ss 14.12.31.23.59.00
dd-month-yyyy:hh:mm:ss 31-Dec-2014:23:59:00
hh:mm:ss 20:00:00 8 o’clock in the evening
hhmmss 200000

(See Abbreviations used in this document.)

Example:

Set the default expiration date to July 27, 2012 at 20:30
default_principal_expiration = 20120727203000

5.3.1 Abbreviations used in this document

month : locale’s month name or its abbreviation;
dd : day of month (01-31);
HH : hours (00-12);
hh : hours (00-23);
mm : in time - minutes (00-59); in date - month (01-12);
N : number;
pp : AM or PM;

12 Chapter 5. Supported date and time formats



Kerberos Concepts, Release 1.19.3

ss : seconds (00-60);
tt : time units (hours, minutes, min, seconds, sec);
yyyy : year;
yy : last two digits of the year;
Z : alphabetic time zone abbreviation;
z : numeric time zone;

Note:

• If the date specification contains spaces, you may need to enclose it in double quotes;

• All keywords are case-insensitive.

5.3. Absolute time 13



Kerberos Concepts, Release 1.19.3

14 Chapter 5. Supported date and time formats



INDEX

R
RFC

RFC 4120#section-10, 7

15


	Credential cache
	keytab
	replay cache
	stash file
	Supported date and time formats
	Index

